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Two-dimensional burner-flame stability is discussed with arbitrary gas expansion. 
Density variations are allowed for by fully coupling the continuity and momentum 
equations. The flame is assumed to be close to a porous-plug-type flameholder so that 
the conventional hydrodynamic zone upstream of the flame cannot be included. 
Instead, the flow is assumed to obey a Darcy-type law within the holder, relating 
pressure gradient and velocity. It is shown that the influence of the holder and the 
acceleration due to gravity are important factors governing the onset of cellularity 
in porous-plug burner flames. Further, the balance of the transverse and longitudinal 
Darcy constants used to describe the upstream hydrodynamic zone within the holder 
have a vital effect on stability predictions. Experimental observations are confirmed 
by the theory presented. 

1. Introduction 
In much of the recent work on flame stability, a fundamental building block is the 

method of matched asymptotic expansions based on large activation energy. Such 
methods rely in general on the concept of an overall reaction governing flame 
behaviour. A striking confirmation of the usefulness of the overall reaction scheme 
has been given in a recent paper by Coffee, Kotlar & Miller (1983). The predictions 
of species concentration, temperature, flame speed and heat release of three types of 
steady planar premixed flames (ozone/oxygen, hydrogen/air and methane/air) are 
carefully compared using first a detailed chemistry model, and then a one-reaction 
model. The agreements between the two approaches are marked, and this excellent 
work has given renewed confidence to the relevance of theories of unsteady flames 
based on global reaction schemes. 

Since the important work of Pel& & Clavin (1982), considerable progress has been 
made in modelling curved flames in uniform and non-uniform flows. The basis of such 
theories is that the transverse wavelength of the curved flame is large compared with 
a typical diffusion length. Fluctuations in pressure, velocity, temperature and species 
have then been considered in large hydrodynamic zones before and after the flame, 
and it is now possible to consider the fluid-dynamic interaction of flames with quite 
complicated flows (Matalon & Matkowsky 1982). 

In considering the stability of plane flames to planar and transverse disturbances, 
theories including the effect of hydrodynamics have considered the flame to be ‘free’ 
and away from solid boundaries. The advantage of the burner-flame model discussed 
in detail in Clarke & McIntosh (1980) is twofold. First, it enables localized and 
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experimentally realizable heat losses to be modelled without the need to alter the 
Arrhenius term and thereby sidestep the cold-boundary difficulty. Secondly, it 
enables the 'free' flame to be approached in a rational manner as a special case of 
the physically appealing burner-flame model. This matter is discussed in some depth 
in the recent review article by Kassoy (1985), who shows that the classical concept 
of a freely propagating flame should really only be viewed in this context. 

In  this paper we proceed to investigate the two-dimensional stability of burner 
flames without any gross assumptions concerning the velocity field. Since at  all times 
the flame is not considered to be more than a few diffusion lengths away from the 
burner surface, an upstream hydrodynamic zone is not included in the analysis. 
Instead, conditions at  the burner surface are established by considering the flow 
within the porous plug to follow a Darcy-type law where the velocity is assumed to 
be proportional to the pressure gradient. The conductance of the flameholder is 
considered large, so that temperature (and hence density) fluctuations are negligible. 
The pressure and two components of velocity within the holder then obey Laplace's 
equation. Thus the mathematical model allows for an upstream hydrodynamic zone 
within the holder which, along with the influence of gravitational acceleration, has 
a considerable effect on the onset of flame cellularity. 

The work presented here is based on the one-dimensional theory of McIntosh & 
Clarke (19843, referred to hereinafter as I), but extended to two dimensions. 
Recently, Buckmaster (1983) has published a stability theory for burner flames which 
assumes the flame is immersed in a constant velocity field. This comes about by 
assuming that density variations are negligible. Such an assumption has produced 
some useful simplifications in previous work, and led to important advances in the 
understanding of diffusional thermal instabilities. However, when fluid-dynamical 
effects become important (as here within the flameholder), then such an assumption 
cannot be made. In  reality, the density variations can be considerable, and thus here 
the assumption is employed that density is inversely proportional to temperature. 
One other important difference is that we make no a priori restriction on Lewis 
number. As explained in detail in I, this parameter can be considered simply 0(1) 
throughout, and need not be expanded in terms of inverse activation energy Or1. 

In keeping with I, we adopt a very definite order in taking limits. There are three 
parameters involved: (i) E ,  the measure of perturbations of the flame; (ii) el, the 
activation energy; and (iii) k, the wavenumber (proportional to diffusion length over 
wavelength and a measure of the two-dimensionality of the flow). In this work the 
s+O limit is taken first ($2), with the assumption O , E + O  in that limit. This 
assumption is necessary since the product 0, E is explicitly encountered when the 
reaction term is perturbed. The O;'+O limit is then taken (53), which effectively 
replaces the Arrhenius chemical source term with jump conditions across the flame 
in terms of 8,. At  this stage in the argument the problem reduces to the solution of 
a set of ordinary second-order differential equations with non-constant coefficients 
(owing to the assumption of non-zero gas expansion). Such a problem could be 
analysed numerically, but to give some idea of the solution we have made the preheat 
equations tractable by treating k as small and developing series solutions up to order 
k2, in much the same way as Pel& & Clavin (1982) (see 54). A dispersion relation 
between complex frequency o and wavenumber k is then obtained and used to 
determine, in particular, the onset of cellular instability for different values of the 
eight parameters, Le (Lewis number), Pr (Prandtl number), 8, B: (reduced activation 
energy), zIfl (mass-weighted stand-off distance), To, (a measure of the gas expansion 
ratio), gr (non-dimensionalized gravitational acceleration) SZ, and Q, (flameholder 
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constants related to the fluid-dynamical effects of porosity). Section 5 discusses these 
results in the context of a typical propanelair flame burning near a porous 
flameholder. The results are displayed in figure 7,  where the onset of cellularity is 
shown to agree well with that obtained in the experiments of Botha &, Spalding (1954). 

2. Formulation 
2.1. Assumptions and basic equations 

The combustion is assumed to take place in a gas stream of low velocity near a 
flameholder. (Figure 1 shows a schematic of the initially steady flame.) Near-isobaric 
conditions are thus assumed, with pressure variations O ( W ) ,  where M is the Mach 
number of the flow. Thus 

In this equation, as in all subsequent analysis, all variables, except temperature, are 
non-dimensionalized with respect to steady upstream conditions. Temperature is 
non-dimensionalized with respect to its steady value in the burnt stream. 

In formulating the governing equations for a premixed flame under unsteady 
conditions in two dimensions, we specifically avoid the constant-density approxi- 
mation, and replace it with the more realistic assumption that 

p = l + M p , .  (1) 

pA= 1, (2) 

where p and A are the non-dimensional density and thermal conductivity respectively. 
For near-isobaric conditions, this effectively implies that thermal conductivity is 
proportional to temperature T. In  practice, A cc Th : 0.75 < h < 0.94 (see Hirschfelder, 
Curtiss & Bird 1954; Kanury 1975), so that equation (2) is a good approximation. 

Assuming that the diffusion process can be described by a single limiting-species 
mass diffusion coefficient and that a simple Fick law of diffusion is obeyed, there is 
a constant Lewis number throughout the mixture which, following the definition of 
Markstein (1964; p. 26), is given by 

where ’ refers to dimensional quantities and the subscript ‘01’ refers to the unburnt 
stream, and the specific heat of the mixture Ck is assumed constant everywhere. The 
Prandtl number of the mixture is also assumed constant, so that 

where p‘ is the coefficient of dynamic viscosity. With the assumption of constant 
specific heat, the immediate implication from (3a,  b) is that, in non-dimensional terms, 

p D = A ,  p = A .  (4a, b)  

Using these relations, one can write down the equations of state, continuity, 
species, energy and momentum (in both longitudinal (x) and transverse (y) directions) 
as 

p T  = To, 9 ( 5 )  
aP a a 
-+-(flu)+- (pw) = 0, 
at ax aY 
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FIQURE I .  Schematic of initially plane flame with porous-plug flameholder. 
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In  these equations u and v are respectively the longitudinal and transverse 
components of velocity, C,,Cr refer to lean and rich species mass fractions, 8, is 
activation energy (referred to initial burnt temperature), a the ratio of molecular 
weights, Q1 the reduced heat of reaction, Sc the flow Schmidt number (= Pr/Le), y 
the ratio of specific heats and A,  the steady, pre-exponential eigenvalue. This 
quantity is typically (for far-from-stoichiometric conditions - see Clarke & McIntosh 
1980) proportional to  8:. I n  the non-dimensionalizing of (5)-(9) characteristic values 
of diffusion length and time have been used and, in particular, the gravitational 
acceleration term gr in the longitudinal momentum balance is related to the 
dimensional acceleration g' by 

gr = g ' D h l / u ~ ~ .  (10) 
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The equations and boundary conditions are an extension to two dimensions of the 
work described in I. Thus the upstream condition on species is the Hirschfelder 
condition 

c,(o, y, t ) - L  rs) = const, 
Mo ax o , y , t  

and the conductance of the holder is assumed large, so that temperature fluctuations 
are absorbed. Hence 

( 1 2 )  

( 1 3 )  

Note that in (1 1 )  Mo is the longitudinal mass flux downstream of the holder, so 

(14) 

The conditions on pressure and velocity at the holder surface derive from 
considering the flow through the porous material of the holder. This is discussed in 
detail in Appendix A. It is shown that for small harmonic perturbations in O(M2) 
pressure (p, exp (wt + iky)), longitudinal velocity ( U, exp (wt + iky)) and transverse 
velocity (V,  exp (wt+iky)) at the downstream face of the holder, U,(O) and V,(O) are 
related to p,(O) by the equations 

To = T(0, y, t )  = const = To,, 

po = p(0, y, t )  = const = 1. 

and with isobaric conditions i t  follows that density is also constant. Thus 

that 
Mo = pouo = uo.  

and Ql, 52, are the non-dimensionalized Darcy constants in the longitudinal and 
transverse directions respectively. /3 is the porosity of the holder. I n  practice /3 and 
the ratio 52,/52, will be specified. SZ, will also be known and is directly proportional 
to the square of the pore diameter. In  Appendix A it is shown that a good 
approximation is 

8d’,uZ 5 2 -  ’- LePrKZ’  

where d’ is a measure of the pore size, and Kil is the thermal diffusivity ( = h ~ , / p ~ ,  Cb). 
Downstream, the conditions are simply that all variables take on their initial 

(steady) values. 
It should be pointed out here that i t  is the boundary conditions at the upstream 

end of the preheat zone that cause this work to diverge from the model proposed by 
Pel& & Clavin (1982). In  that paper they were dealing with essentially ‘free’ flames, 
and allowed for variations in all quantities far upstream on a hydrodynamic 
lengthscale. In  our case we are dealing with a somewhat different problem where 
any fluctuations upstream are transmitted to  a hydrodynamic zone within the holder 
itself. As pointed out by McIntosh & Clarke (1984a) and Buckmaster (1983), the 
thermal inertia of a real burner is large and will absorb any temperature fluctuations. 
However, velocity and pressure fluctuations do not follow the same pattern, and con- 
tinue into the holder. Because this upstream hydrodynamic zone is not the same type 



48 A .  C. Mclntosh 

as that found ahead of ‘free’ flames (such as in Pelck & Clavin 1982), the twin-scaling 
approach advocated in that paper is not adopted here. 

Since we are shortly to  consider only small perturbations in the Y-direction, it is 
convenient to transform the x-coordinate to the mass-weighted variable 

r x  
x1 = J pdx, 

0 

and, noting that C, is related to C, through the mixture strength constant I A ,  1, i.e. 

c r  = c,+ I 1 I, 
(5)-(9) transform to 

pT = To,, 

ap ap au a a 
(Mo-  W )  -+ -+pZ-+H-  (pw)+- (pw) = 0, 

ax, at ax, ax, a Y  

aT 1 a2T 

act act ac, 
a )  ( ;;: T) ax, at ay ax, ax; p ax, ay 

ac azc, I (  a (Mo-  W )  -+-+w-+wHC---- H - + -  A H - + -  

au au au au 1 a 
ax, at ax1 a Y  Y ax1 

(No-  W)-+-+wH-+w-+-~  

H = jox 9 dx, 

W = 6’ & (pv)  dx. 

a Y  
(27) 
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2.2. Small perturbations 
We now consider each of the seven variables T, C,, p, u, v, p,, A to be perturbed from 
its initial steady value. The small (order-€) perturbations are restricted to be such 
that 

and thus we follow closely the analysis of the earlier paper (I), where a perturbation 
analysis of the one-dimensional equations was made. The perturbations here are in 
all seven variables, with 

X(x,,y,t) = X,(x,)+cX,(z,)exp(wt+iky) (X = T,Ct,p,u,v,p~,A), (30) 

and w and k are respectively complex frequency and wavenumber for (unforced) 
harmonic disturbances in two dimensions. 

6 6 e;,, (29) 

Equations (2) and (4) immediately imply that, to leading order in E, 

pu = -3 T,, (311, (32) 

and it can be shown (after a considerable amount of algebraic manipulation) that 
(22)-(26) yield the following linearized perturbation equations in the remaining five 
variables T,, Ctu, U,, V,, p,: 

T 
A, = G To1 ' 

oT, +-- dTU ( W, - M,(O)) -- dT, T -- dull ikVu T, = 0, 
dx, dx, O1 dz, (33) 

dT, 1 d2T, dT, 1 T," dT, 
dx, Le dz: dx, LeT& dx, 

oT, +--- -- ( W,-M,(O)) - (ik - H, - k2Tu) 

dCt, 
dX1 T2,l &l 

( W, - M,(O) ) - - dCtu d2Ctu wc,, +---- 
&I &: 

dz1 Y &l To1 &l 

(ik 
H, - k2Ccu = - Le R, , (35) 

mu,+-+---- dU, 1 dp, 1 (W,-M,(O)) - dT, 

d2uu 2 sc a ikSc T, dV, ScT," ik dT, 
- - isc dx: 3 To, ik- dx, (T, Vu)+- To, ~ + ~ ( ~ d , , H u - k 2 u u ) ~  

dV ikT, ScT, d2Ts T,H, dT, T,H, 
V, t A+ ~ p, + - H, s r  

dx1 YTo1 T,2, dx? T:l &l To1 
d2 V, 4 k2 Sc T," V, ik Sc dT, Sc d T  d 1 ikScT, dU, 

= sc + - - U, + - 2 - (T, H,) +- - - , 
dx: 3 T& To, hl Ti1 bl &l 3 To1 dx, 

where 

(39) 

H, T, = - ik Jozl T, dx, , 

W, = ik 6' V, dx, , 
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The boundary conditions upstream are 

UJO) = - kB, p , o  Y = M,(O), (43) 

(44 1 V,(O) = -ikQz PIl(0) -, 
Y 

where B,  is the heat-release parameter given by 

1-To1 - - B: B,  = 
1 -exp ( -  Lezl f l )  1 -exp ( -  Lezlf l ) ’  

xlfl is the initial non-dimensionalized stand-off distance, and B: is the adiabatic 
heat-release parameter ( = 1 - To,). 

Downstream at x1 = m the boundary conditions are simply that T,, C,,, U,, V, 
and p ,  all decay to zero. Thus the linearized unsteady problem is now formulated 
for two dimensions with full allowance made for gas expansion. We now proceed to 
the analysis of this equation set, using first the fact that activation energy is large, 
and then approximating to the dispersion relation for small wavenumber. 

3. Asymptotic analysis for large 8, 
Equations (33)-(37) are now analysedin three zones : preheat (xl < xlf,), equilibrium 

(x, > xlfl) and reaction (zl near xIfl), where xlfl is the initial (steady) value of flame 
position. The analysis is very similar to that of I with some extensions to include series 
expansions for p ,  u and v. These are summarized in Appendix B. Notice that the inner 
expansions are not the same as those obtained with E % 8;’. In  this case ( E  -4 OF1) T,, 
Cdu, U ,  and pu are discontinuous to O(1) across the flame. 

Using subscript ‘p’ to denote preheat zone, ‘e’ to denote equilibrium zone and an 
asterisk to mean ‘evaluated a t  the flame (i.e. x1 = zip,) ’, we obtain the following jump 

with 
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Note that an overbar has been used above CGup and dCGup/dx, to  denote 'times 

The jump conditions (46)-(51) are equivalent to finding the jump conditions for 
each set of coefficient functions in the 8,l expansion and then reconstructing the 
series. I n  I for one dimension it was shown that near unit Lewis number the flame 
response was correctly predicted by a ' composite ' dispersion relation obtained by 
reconstructing the asymptotic series in 8;l. Effectively this verified the method of 
setting up jump conditions at the beginning of the analysis, and thus this method 
has been adopted here. 

The equations and boundary conditions in the preheat and equilibrium zones 
become as follows. 

(l+g)Q,/g'. 

Preheat : 

w T  + x - ( W u p -  U,,(O)) 2 - T  ~ - i k V u p T s p  = 0, (53) 
dT dT dU 

up dx, dx, O1 dx, 

w T  +>--A- d T  1 d2T ~ - ~ ( i k A H u p - k 2 T u , )  dT T2 d T  =0 ,  

(54) 
dx, Le dx; (wuP-uuP(o)) dx, L e c ,  dx, 

. .  

+ ~ - d 2 ~ - ( ~ u p - U u p ( 0 ) ) ~ - J ( i k ~ H  d C  d C  T2 d C  - k 2 G )  =0 ,  (55) 
wG dx, dx: dx, T,2, dx, UP 

where 

with 

dUu 1 dp, 1 dT wuup+-+---- (Wup- U,,(O)) 
d X 1  Y dX1 To1 d X 1  

d2Uu 2 Scik d ikSc dVu 

T;, (To, h1 up 

- - dx: 4 s c 2 - - - -  3 To, dx, (Ts, V U P )  +T,, TSP < 
ScT2 ik dT 
+A - A H  -k2Uup), 

ScT, H, d2Ts, T, Hu dT,; T,,H,,g, 
w v u p + G + ~ p U P +  dX1 $, &.; k;, dx, To, 

ikSc d T  
Tip V,, + - U,, 

Sc d T  d 1 ikSc dUu 
T 2 1  d X 1  dX1 3 To, sp dx, 

d2V 4k2Sc - - s c 2 - - -  
dxt 3 T;, To, dX1 

+-2- (Tspfiup)+--T -, 

Hup Tsp = - ik s,"' Tup dx, , 

Wup = ik jox' Vup dx, , 

TUP(O) = 0, 

B, exp ( - XlPJ 3 

P U J O )  
Y 

Uup(0) = - kQ3 P up, (0) 

V,,(O) = -ikQ2 P L, (0) 
Y 

Y 
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and, from the steady solutions, 

T3p = 1 - B, + B, exp [Le (x1- X1fl )I ,  
ccsp = - ~ l [ e x P ( ~ l - ~ l , l ) - l l .  
~ 

Equilibrium : 

1 ikSc dVUe Sc k2 d'ue + 1 dpue = Psc d2U,, + - - 
3 dxi 3 To, dx, cl oUue+- 

dx, Y dX1 

Hue gr ikpue 4 k2 Sc V,,, 1 ik Sc  dU,, 

dX1 d 4  To, YTo1 3 El 3 To1 dX1 ' 

uue ' 

wvu,+--sc% d Vue +--- 

with Tue(w) = 0 ;  Uue(m) = 0;  VUe(w) = 0;  pUe(w) = 0, (73~,b ,c .d)  

T,, = 1 ; C,,, = 0. ( 7 4 ~ .  b )  

Because of the intractable nature of the preheat equations, i t  is not possible to obtain 
an exact analytical solution to the differential equations (53)-(57) and then proceed 
with equations (66)-(69) and conditions (46)-(52), (60)-(63), (73) to obtain an exact 
form forthedispersion relation betweenwand k. Only byassuminga'constant-density ' 
approach (whereby all terms explicit in Tsp and dTSp/dx, in (53)-(57) are replaced 
by 1,0 respectively) can an exact solution be found. This somewhat-artificial routse 
has been worked through by a number of authors, and in our terminology the 
two-dimensional version of equation (150) of I with zero gas expansion is given by 

where 

covh (rl xlf,) 
sinh (r l  xlfI) ' 

covh (Le s1 clf ) 
sinh (Lc y1 xlfl) ' 

H E r ,  

s = s1 

(77) 

(79) 

Notice that only thc terms explicitly dcpendent on 5')sp in (63)-(57) havr sct to 
1 (S: = 0) to simulate zero gas expansion. The S: 8, term remains unalt,ered. bring 
the product of heat release and activation cnergy and direc~tJy cquivalcnt to the 
reduced activation energy of PelcB & Clavin (1982). 
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FIQURE 2. Two-dimensional neutral-stability boundaries with zero gaa expansion (i.e. p' = const.), 
activation energy 8, B: = 10. Stable response predicted within region enclosed by two curves for 
each zI1,. 

The relation (75) is similar to that derived by Buckmaster (1983) and (for 
one-dimension) to that obtained by Margolis (1980). It is a useful comparison for the 
approximate theories, which are now developed to solve the preheat equations for 
non-zero gas expansion. Before proceeding to this, we summarize some of the main 
conclusions from the analysis of this result. 

The neutral-stability curves resulting from relation (75) are set out in figure 2 for 
a typical value of OIB: = 10. It is now known that the cellular instability (Le < 1) 
is suppressed as the heat loss to the holder is increased (Buckmaster 1983). On the 
other hand, in general the pulsating instability ( h e  < 1) is made more accessible when 
there is heat loss to the holder present. In  the work of Mclntosh & Clarke (1983) 
leading-order theory alone was used, and it was shown that the planar (k = 0) 
neutral-stability curve reaches a maximum ncar xlfl = 2 such that to cithcr sidc of 
this xlpl value, the effect of the holder is to suppress instability. This trcnd is confirmcd 
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by the more accurate predictions of second-order theory (see I, figure 4) and in 
independent work by Buckmaster (1983). In both these latter papers it is predicted 
that the Lewis number for the turning point becomes closer to unity as dl B: increases, 
till for very large 8, B:, the turning point occurs for Le > 1 (rather than Le < 1 for 
moderate values of 8, B: - note that Lewis number in the Buckmaster paper is the 
inverse of that used here). As one would expect for 8, B: increased still further (see 
e.g. the el B: = 50 curve of figure 5 of Buckmaster (1983) and figure 2 of McIntosh 
& Clarke (1983)), the neutral-stability curve for leading-order theory alone is re- 
covered. As Buckmaster points out, this curve will be more relevant for 'limit' 
mixtures (i.e. when flame speeds are low) since activation energies will be very large 
owing to low flame temperatures. One cautionary remark should be made concerning 
the nature of the neutral stability curve for small xlfl. As pointed out in I, the high 
frequencies of pulsation predicted below the zlfl turning value tend to suggest that 
time should be rescaled to take account of very fast flame response. Hence in that 
paper the curves were dotted in this region, indicating that the predictions of the 
theory may need further verification by experiments and better modelling 
techniques. 

Returning to the main problem of solving the differential equations for non-zero 
gas expansion, we observe that the equilibrium-zone equations do have an exact 

k H E  ** 
= exp[ -- (xl-xlf,)]-i - gr + 8, T:e exp [Le (4-8) (xl-xlf,)], (81) Y Y  To 1 k 

._ 

where 

1 sc 
8, = el+-- (uLe2(+-s)2+Le3(fr-.s)3), (85) 

3 To1 

t Downstream where temperature fluctuations are negligible, one has the Euler equations in 
pressure and the two components of velocity. The apparent singularity of (83) when k = 0 arises 
from the continuity equation (66). This reads 

YO that for k = 0 one requires a zero-gradient condition on (Iue downstream. The other apparent 
singularity when w = k/To, can only occur when w is real and positive (since k is real and positive). 
Thus the singularity takes place in a region already unstable, and thus will not be of significance 
in this theory. 
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8 =  8 2  

- Le2 (t- s)2 - k2/cl ’ 

1 s c  8, = -Le ( t - s )  Q,+- - (w Le ( t - 8 )  + Le2 (+-s)2), 
3 To1 

8 4  8 =  
- w +  k 2 S c / c l  + Le (;-s)-Sc Le2 ( + - Q ) ~ ’  

8, = w +  Le (+-s)-Tol Le (i-8) Q,, (89) 

This solution to  the equilibrium equations is essentially that obtained by Pel& & 
Clavin (1982), but with the inclusion of the (small) effect of the downstream 
temperature field. This latter is included, since the solution is required immediately 
downstream of the flame and not just at distances of the order of the so-called 
‘ hydrodynamic zone ’. 

We now turn to approximate small-wavenumber analysis to solve the preheat 
equations for non-zero gas expansion. 

4. Small-wavenumber analysis 
I n  order to  solve (53)-(57) we make the approximation that wavenumber is small. 

The problem immediately becomes more manageable if one also assumes that the 
complex frequency w is small. Thus, specifically, if S is regarded as a small number, 
we write 

Since, for pulsating flames, w is not always small, one must recognize that the theory 
will not necessarily have validity for such modes. However for cellular flames, the 
approximation (97) will hold true near the neutral stability boundary. 

The preheat equations (53)-(57) then degenerate to  a series of second-order differen- 
tial equations with constant coefficients and progressively more complicated forcing 
terms as order 6 and order 62 terms are included. We write 

( 9 8 4  

(98b) 

(96L (97) k = To, KS,  w = WS. 

Xup = Xu,, + SXupl + S2Xup2 . . . [ X  = T ,  Ct, U, W ,  ~p]. 

Yue = YueO+6Yue1 +a2 YUe2 . . . [ Y = T, u, v, p ] .  
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It can be shown from (52a) and (57), with (63), (73c) and (96), that  the transverse 
velocity throughout is 0(6), so that 

vupo = vu,o = 0, 

and the equations become as follows. 

Preheat O( 1 ) : 

Preheat O(6)  : 

dTUP0 1 d2TUP0 = 0, 
dx, Le dxt 

Preheat O ( P )  : 
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iK d C  - - Hupl - K ~ C ~ ~ ~ ~ ]  + To, KQ, +', [Tol dxl Y d X 1  

Equilibrium zone : 

is given by 
it can be shown that the solution of the equilibrium equations for small o and k 

* _ -  * Tue = T:eo +S[Tue, ~Tueo(x1-x1f1)1 

+ SC K UZeo(W + K )  + WK U:eo(~,  - x l P l )  + O(S2), ( 1 16) 1 
where HZel = - iTol K loz1f' Tupl dz, , 

HCe2 = - iTol it I,"'" Tup2 dxl , 

and it has been recognized that in order to obtain the dispersion relation to S2 
accuracy, only Tu and C,, are required to O(S2). 

The boundary conditions are exactly the same form as (60)-(63), (73a-d) with the 
relevant coefficient functions of the expansions (98 a, b) inserted. The jump conditions 
(46)-(52) also follow through at each order in 6, in exactly the same manner. 

The solution to the whole problem is now a matter of solving the differential 
equations in the preheat zone a t  each order in 8. This somewhat-tedious process is 
not detailed here. The method involves the solution of (108) for Vupl, which is then 
integrated to give W,,, (see (112)). These - solutions are then substituted into the 
right-hand side of (1 10) and (1 11) in Tup2, C,,,,. This process of solving for temperature 
and lean species uses all boundary conditions and jump conditions except for (48). 
At this juncture all the solutions are in terms of T:po, TtPl ,  T:,,. The insertion of these 
solutions into (48) then results in a solvability condition that is a dispersion relation 
between W and 2. It is found that this condition is of the form 

Fo + SF, W + SF, K + S2F3 W 2  + S2F, WK + S2F, it2 = 0, (121) 
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where the constants F,, ..., F5 are functions of Le, x l f , ,  To,, Pr, B: ,  g,, SZ, and SZ,, 
and are listed in McIntosh (1984). Condition (121), rewritten in terms of w and k ,  is in 
fact a quadratic in w ; 

A ( k ) w 2 + B ( k ) w + C ( k )  = 0, (122) 

where A ( k )  = F3, (123) 

k k2 
C ( k )  G Fo+F2-+F5- .  

To1 T 2 1  

The result (122) can now be used as a basis for discussing the stability of burner 
flames subject to two-dimensional infinitesimal disturbances, where gas expansion is 
fully allowed for, and the influences of the flameholder and gravitational acceleration 
are included. 

The constants Fl, . . . , F5 are in general complicated functions of the parameters 
mentioned above. However, the important constant Fo reduces simply to 

and immediately highlights the order of xlfl (stand-off distance) for the expansion 
(121) to be valid. As 6+0, so F, must vanish, which implies that 

This restriction is quite permissible in the context of the burner problem we are 
addressing. It amounts to a restriction of small heat loss to the burner. It will be seen 
from $ 5  that an acceptable upper limit for k is about 0.2. Thus if 6 - 0.2, then Lexlf, 
can be as small as 1.6. If 6 - 0.1, which is certainly well within the accuracy of this 
theory, then Le x l f ,  is only barred from values below about 2.3. Thus the validity of 
the expansion (121) is easily maintained. 

5. Discussion 
In that condition (122) is an approximation to the dispersion relation for small w 

as well as small k ,  one must recognise that it cannot give very accurate results for 
the pulsating neutral-stability boundary. The reason for this becomes evident when 
we observe that the planar (k = 0) analysis predicted w = i6 values along this line 
thatwerenotparticularlysmall(& = 0.3-0.4,are typicalvalues - seeIandBuckmaster 
1983). Thus the analysis will not reproduce precisely the results of the exact planar 
theory. One can thus only obtain a general indication of the effect of gas expansion 
on the condition for neutrally stable pulsations. The indications are that the shape 
of the curves in the lower part of figure 2 are not drastically altered by gas expansion. 
In that we are restricted to small k in this analysis, the onset of planar instability 
will be well predicted by the planar dispersion relation derived in I (equation (148)) 
and equivalent to (75) in this paper with k = 0 .  This point is referred to again at the 
end of this discussion. 

If we now consider cellular flames, we note that the condition for neutral stability 
is that w = 0. This is the condition for a standing two-dimensional wave pattern to 
be observed (for a particular value of wavenumber k). Thus the predictions of (122) 
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FIGURE 3. Test of small-wavenumber theory for zero gas expansion, activation energy B: = 10, 
and for three stand-off distances xl,,. All curves related to upper cellular neutral-stability boundary 
below which stable conditions are predicted. 

are accurate as long as k is small. The neutral-stability condition is simply C(k) = 0, 
i.e. k k2 

Fo+F2-+F - = 0. 
To1 T2,l 

As a check on this result, the neutral-stability curves resulting from (128) are 
compared with those obtained from the exact relationship (75) for zero gas expansion 
(that is with To, = 1) (see figure 3). Up to about k = 0.2, the curves follow closely 
the exact results. For larger k-values the loss of ks and higher terms removes the 
minimum behaviour that the exact relationship predicts. Nevertheless, we have 
enough confidence in the approximate technique to  show clearly the effect of gas 
expansion, gravity and the Darcy constants, for cellular flames with low wavenumber. 
I n  figure 4 the effect of gas expansion is displayed for O1 B: = 10, xlp, = 4,6,8, gr = 0, 
Q, = 0 and Pr = 0.75. The unbroken lines are plots of critical Lewis number for 
neutral stability against wavenumber k, with To, = 0.3. The broken lines are plots 
for To, = 0.5. Typically, To, will be in the region of 0.2-0.3, so that the main effect 

3 P L Y  181 
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FIGURE 4. Effect of gas expansion on cellular neutral stability boundary; O1 B: = 10, Pr = 0.75 and 
for three zII1 values. -, To, = 0.3 ; - - - -, 0.5. 
FIGURE 5. Effect of gravity on cellular neutral-stability boundary; 8, B: = 10, Pr = 0.75, x,Il = 4, 
To, = 0.3. 

of gas expansion on its own is to suppress the cellular instability. This confirms the 
findings of other authors (see Clavin & Williams, 1982, p. 267). 

In  figure 5, the effect of gravity is displayed on the test curve 8, B: = 10, xlf! = 4, 
SZ, = Q, = 0, To, = 0.3, Pr = 0.75. The constant gr defined by (10) is very sensitive to 
changes in inlet flow speed. Typical values for a diffusion coefficient of approximately 
Oil = 0.3 cmz/s are gr = 0.29 for uil = 10 cm/s and gr = 0.04 for uil = 20 cm/s. 
Since gr can vary quite considerably, we have considered it an 0(1) parameter 
throughout this work, and its effect is clearly demonstrated in figure 5 .  The unbroken 
lines are neutral-stability curves for gr = 0, the broken lines are plots for gr = 0.04 
and the chained lines are plots for gr = 0.29. Thus the main effect of the non- 
dimensional gravitational acceleration gr on its own is to encourage the onset of 
cellular instability. However this is somewhat of an artificial exercise here, since in 
reality as u;, decreases (and gr increases), zlfl will generally decrease. Consequently 
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FIGURE 6. Effect of longitudinal Darcy constant a, on cellular neutral-stability boundary ; 
8, B: = 10, PT = 0.75, xlfl = 4, To, = 0.3, gr = 0, porosity B = 0.75, transverse constant a, = a,. 

the true effect of buoyancy will be the competition of the two effects alustrated in 
figures 4 and 5. 

In figure 6, the effect of the Darcy constant is shown on the test case 8, B: = 10, 
xlf1 = 4, To, = 0.3, Pr = 0.75, gr = 0. From equation (18), one should realise that the 
non-dimensional constant a, increases with velocity u;,, and for Oil = 0.3 cm2/s, 
Lewis number near unity and Pr = 0.75, typical values are 52, = 1.19 for 
U;, = 10 cm/s and 52, = 4.74 for U;, = 20 cm/s. The destabilizing effect of 52, is 
clearly seen in the dotted (a, = 1.19) and the chained (52, = 4.74) lines in figure 6, 
where a porosity of 0.75 has been assumed and the Darcy constant in the transverse 
direction (a,) is assumed equal to 51,. 

Though not illustrated here, it  should be noted than an increase in 8, B: tends also 
to draw the neutral-stability curves downwards (i.e. reduces Lecrit), but that 
Prandtl-number changes have only a small effect. 

In reality, the overall effect of gas expansion, gravity, activation energy and the 
Darcy constants will be quite complicated. As inlet speed increases, zlpl will increase 
and gr will decrease. These two effects will be stabilizing for flames with Lewis 

3-2 
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FIQURE 7. Typical plot of inlet flow speed against equivalence for various stand-off distances 
See text ($5) for basic data used. Curves roughly correspond to propane/air mixture burning on 
porous-plug burner. Shaded regions correspond to cellular boundary (near-adiabatic conditions) and 
onset of pulsations (at low speeds). Upper cellular boundary is shown to be accurate within 
limitations of approximate, small-wavenumber theory, but lower cellular boundary is shown to be 
inaccurate by same limitations. Points A and B at C$ = 1.4 correspond to where kCrit for 
cellularity = 0.2 (see discussion in text). 

numbers in the range Le = 0.5-1.5. However, the Darcy constants SZ,,SZ, are 
increasing and have a destabilizing influence, and eventually instabilities become 
apparent just before adiabatic conditions are reached. To demonstrate this, we have 
considered typical plots of inlet speed against equivalence ratio for a steady flat flame 
near a flameholder, where the adiabatic stoichiometric speed is taken as 
7Jil = 20 cm/s, and the dilution factor is taken to be 7. The stoichiometric adiabatic 
temperature is 1500 K, the gas expansion parameter B: at adiabatic conditions is 0.8, 
and the dimensional activation energy is taken to be 40000 cal/mol. Using the 
formula derived in the work of Clarke & McIntosh (1980), the inlet speed is plotted 
against equivalence ratio for zlf, = 2 , 3 , 4 , 5  and co (adiabatic conditions). The Lewis 
number is considered to vary with equivalence ratio from 0.58 (fuel lean) to 1.16 
(fuel rich) and thus roughly represents a propane/air mixture (see I and Pel& & Clavin 
1982). To estimate the Lewis number a t  mixtures between these extremes, the 
formula suggested by Joulin & Mitani (1981) for order-2 reactions is adopted. By 
setting a value for the thermal diffusivity, Prandtl number, and the pore radius at 
the holder, one can then use the theory of this paper to establish the critical 
wavenumber (if any) for cellular instabilities to occur. The onset of such conditions 
is indicated in figure 7, for Pr = 0.75, Kil = 0.3 cm s-, and d' = 0.01 cm, by the 
shaded area just below adiabatic conditions. The Darcy constants in the transverse 
and longitudinal directions are assumed equal and the porosity is set a t  0.75. At  the 
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FIGURE 8. Variation of neutral-stabilit curves with zIf1 near upper cellular boundary of figure 7 ; 
d; = 1.4 (Le = 1.047). 

onset of instability, owing to the approximate nature of the theory, only the initial 
part of the U-shaped (exact) curve is obtained (see figure 2), so that the wavenumber 
for the onset of cellularity (i.e. the value at the minimum) cannot be accurately 
obtained. If the preheat equations were solved exactly, then a definite value could 
be found corresponding to minima like those illustrated in figure 2. Nevertheless, even 
for this approximate theory, the critical Lewis number for the onset of cellularity 
can be determined, and figure 7 clearly demonstrates the region where the cellular 
instability is to be expected. Figure 8 is a detail of how this occurs in (Le, k)-space 
at & = 1.4 ( h e  = 1.047) where the critical zlfl value is 4.596. One observes that near 
this upper stability point, xlf, is increasing rapidly with inlet speed and that as zlfl 
increases (e.g. see zlI1 = 5 curve), so the kcrit value quickly comes down to small (and 
hence more accurate values). One should note that the dimensional stand-off distance 
can still be small in this region (McIntosh t Clarke 1984a). Figure 8 also serves to 
demonstrate that there can be a lower neutral stability curve (see the two parts of 
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the curve for zlfl = 4 and 4.596). However, as can be seen from the figure as zlfl 
increases, this part of the curve shifts below accessible Le-values, so that it does not 
generally affect upper instability predictions. 

Figure 7 is important because i t  confirms the experimental observations of Botha 
& Spalding (1954), who found cellularity throughout the stoichiometric range as adia- 
batic conditions were approached (see also figure 5 of Clarke & McIntosh (1980), which 
illustrates the experimental stability boundary in a Ui,/&-plot). Botha & Spalding 
(1954, p. 94) came to the conclusion that preferential diffusion could not be the sole 
mechanism governing these flame irregularities and Markstein (1964, p. 77) speculates 
on the reason for the observations by Botha & Spalding. He attributes the cellular 
instabilities in their experiments to be due to the influence of the porous flameholder. 
In that work, he suggests transverse temperature variations across the flameholder 
surface were responsible. However, since generally the conductance is large, temper- 
ature fluctuations will be negligible. Thus the theory put forward in this paper is 
that hydrodynamic inJluences within the holder cause such cellularities to occur, and 
the similarity of figure 7 to Botha & Spalding’s results substantiates this. 

Further investigations into the cause of the upper cellular instability showed 
clearly the importance of a non-zero value of 8, (the Darcy constant in the transverse 
direction i.e. the imposed ‘strain’ on the flow). The onset of cellularity is much the 
same as 8,/8, is reduced from 1 .O to 0.1. However, once this ratio becomes lower 
than about 0.1, the neutral-stability line in figure 7 draws noticeably closer to the 
adiabatic curve. Finally, if 8, is set to zero, the instability can no longer be found. 
This finding indicates that cellularity will be more readily observable on porous- 
plug-type flameholders than with holders of the hypodermic type (where transverse 
velocities in the holder are not allowed). This is in agreement with observations. 
Schimmer & Vortmeyer (1977) performed experiments with a flat flame near a burner 
constructed of small copper tubes. They found that for all subadiabatic speeds flat 
flames could be stabilized. Only at superadiabatic conditions (beyond the scope of 
this theory) did the flame become wrinkled. In that subadiabatic cellularity is 
predicted quite strongly for Q,/a, as small as 0.1 (with little change for higher values), 
it is to be expected, as long as a flameholder is of the porous-plug type, that cellularity 
will always be observed just before adiabatic conditions are reached. 

Figure 7 also has a lower stability boundary which was not observed in Botha & 
Spalding’s experiments. In  figure 9, the neutral-stability curves near this point for 
& = 1.4 (Le = 1.407) are shown. One observes that a t  these low values of zlf, the lower 
part of the neutral-stability curve takes prominence, and i t  is from this part of the 
curve that instabilities are predicted. However, as zlf, goes below the critical value 
(here xlf, = 2.630) the kCrit values are larger than those in the region beyond the upper 
stability boundary, so that the results will not be reliable for this essentially small-k 
approximation. To illustrate this point, we have located two points at 6 = 1.4 where 
kcrit = 0.2 (and thus comes within acceptable bounds of accuracy). Point A is only 
very slightly beyond the upper neutral-stability boundary, indicating that this 
boundary is an accurate prediction of the onset of cellularity. However, point B is 
well below the lower stability boundary. In the region between the boundary and 
point B the kcrit values are above 0.2, and thus both the existence and position of 
the lower neutral stability curve is doubtful from this approximate (small-k) theory. 

We also show some predictions of the planar theory using equation (148) of I 
(equivalent to (75) of this paper with k = 0). For the parameter values used in figure 
7, the onset of pulsating instabilities is predicted to occur at low speeds under fuel-lean 
conditions (see left-hand shaded region on figure 7). The boundary will tend to shift 
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upwards and further towards fuel-rich conditions when the activation energy is larger. 
In the region of this boundary travelling waves will be expected to occur (where 
o = i4, k 0), which is in general agreement with Botha & Spalding (1954, p. 93), 
who indicated that at low speeds waves or rings were formed. The numerical work 
of Margolis (1980) also substantiates this prediction. 

Free-&me limit 
A t  each mixture strength we have shown that cellular instabilities are predicted 

just before adiabatic conditions are reached. It is important to realize that large 
values of zlfl do not necessarily mean that the actual stand off distance of the flame 
is more than a few millimetres (see McIntosh & Clarke 1984~) .  Thus the flameholder 
hydrodynamics have a considerable effect for inlet speeds quite close to adiabatic 
conditions. 

In  general, (122) is a complicated function of gr, To,, Le, Pr, Q,, Q, as zlfl gets large. 
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There is, however, a useful comparison with the work of previous authors when 
gr = SZ, = 0, = 0. In the limit xlfl = 00 one then obtains a much-simplified version 
of (122): 

The last term in (129) implies a critical Lewis number of 
0 

for the onset of the cellular instability. This confirms the findings of previous authors 
(Sivashinsky 1977) using diffusional-thermal theory alone. With To, = 1 (no gas 
expansion) there is immediate correspondence to the 

Zcrit = 0, B,*(Lecfit- 1)  = 2, (131) 

value derived in such theories, the significance of which as been much investigated 
(Buckmaster & Ludford 1982). 

However, this limit is only of passing interest here, since, in reality, the hydro- 
dynamic fluctuations within the porous material of the holder have a strong influence 
even near adiabatic conditions. For very large stand-off distances a large hydrodynamic 
zone would need to be added downstream of the holder and ahead of the preheat zone 
(similar to that used in the model of Pel& & Clavin 1982). Thus we conclude that 
the fluid dynamics of the flow, whether in the flameholder (burner flames) or in a thick 
upstream zone (free flames), has a strong influence on flame behaviour. 

6. Conclusions 
The stability ofburner flames to two-dimensional disturbances has been investigated 

with no limitation on gas expansion. Within the porous-plug-type burner, it has been 
assumed that the mixture obeys Darcy’s Law linking velocity and pressure gradient. 
The problem has been first linearized for small unsteady perturbations. Activation- 
energy asymptotics have then been applied to reduce the problem to a set of ordinary 
differential equations with non-constant coefficients and jump conditions across the 
flame. Small-wavenumber analysis has finally been used to make the preheat 
equations tractable. A dispersion relation has than been derived and used to predict, 
in particular, the onset of cellular instability as a function of Lewis number, Prandtl 
number, activation energy, stand-off distance, gas expansion ratio, gravity and 
flameholder hydrodynamic characteristics. 

A major result in this paper is that the hydrodynamic interference of the porous-plug 
flameholder has a strong influence on the occurrence of flame cellularity. In 
particular, the theory predicts the onset of cellularity near adiabatic conditions and 
throughout the stoichiometric range. This is in accord with the experimental 
observations of Botha & Spalding (1954). For hypodermic-type holders, where 
transverse velocities are not allowed, the instability is removed for subadiabatic 
conditions . 

This fact underlines the finding of Pel& & Clavin (1982) - that diffusional-thermal 
theory alone cannot explain all experimental observations. In particular, hydro- 
dynamic instabilities play an important part in flame behaviour, and here we have 
shown that the hydrodynamic zone within porous flameholders often used in experi- 
ments, can have a profound influence on the experimental results. 
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Appendix A. The flow within the porous-plug flameholder 
Within a porous material the flow can be assumed to  obey Darcy's law, which links 

the pressure gradient with flow velocity (Carman 1956). Thus in the longitudinal 
direction 

(A 1)  

(A 2) 

' ' - - Q I -  apt 

vt - -a' apt _.  

h - 1 ax/ 3 

and in the transverse direction 

- Q Y '  

a a 
at! ax a Y  

Continuity implies 
@+, (p'UL)+, (p'VL) = 0, 

but assuming that the holder has a large conductance such that temperature (and 
hence density) fluctuations a t  the holder surface are absorbed immediately, we are 
left with the following three equations in non-dimensional form : 

Note that the non-dimensionalization follows that given in $2 of the main text and 
that 

The subscript 'h '  in (A3)-(A5) refers to quantities within the holder. At the 
downstream surface the transverse velocity and pressure are assumed to  be continuous, 
but the longitudinal velocity is reduced by a porosity factor /3, which is less than unity. 
Thus 

(A 8) U&, = 0) =p, 

If we now consider perturbations of the form 
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5 1 d  
then we obtain the equation set 

(J =-LA 
uh y dx, ’ 

On the assumption that the length of the porous region is large (compared with 
diffusion lengths), the solution to these equations is given by 

Using the conditions (A 8)-(A 10) a t  the downstream interface, we then have the 
results 

PUW U,(0) = -51, k -, 
Y 

where 51, = p(a,a,):. (A 22) 

These are the results (15a), (16) and (17)  in the main text. 
It remains to estimate a value for Q;. Using a simple approach to the flow in the 

porous material, Clarke (1984) derived the following relationship between 51; and the 
dynamic viscosity coefficient pi, : 

8d’2 
(A 23) 52; = -, 

Pi1 

where d‘ is a measure of the pore diameter. More-general formulae can be derived 
(see Carman 1956), but they only alter the proportionality factor. The essential 
feature is the proportionality to  d‘2 and the inverse of pi,. We adopt this simple rela- 
tionship here, and observe from (A 7a) that 

8d’, pi1 uii = 8df2ui2, 
pol  Do, Le Pr Kit ’ 

a,=?-- 

where Ki, is the thermal diffusivity and Le and Pr are Lewis and Prandtl numbers. 
Equation (A 24) corresponds to (18) in the main text. 

I n  practice, d’,  p and the ratio 512/511 will be specified a t  the holder. For the results 
illustrated in this paper p was set a t  0.75 and the ratio Q,/0, set to unity. d’ was 
usually taken to  be 0.01 cm. 
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Appendix B. Jump conditions across the flame 
The derivation of the jump conditions across the flame follows closely that given 

in detail in I with an extension to two dimensions. Therefore we only summarize the 
method here. Inner series expansions are sought for T,, C,,, U,, H ,  and W, in 
ascending powers of 8;'. 

(B 1) 
1 1 

T, = -St'( X) -- Y : ) ( X )  -- Y c ' ( X )  - . . . , 
4 0; 

1 1 u, = @t)(x)+-%p(x)+-@p(x)+ ..., 4 0; 

v, = VLO)(X)+- Vy(X)+-Y-f)(X)+ ..., 
61 0; 

H ,  = Ht)(x)+-Hp(x)+-Hp(x)+ ..., 
4 0; 

w,= wt)(x)+-wt)(x)++rg'(x)+ ..., (B 6) 
81 81 

x = ~l(xl-xlf l ) ,  (B 7) 

T, = 1 -- S(l)(X) - . . . , C,, = W ( X )  + . . . . 

(B 3) 

(B 4) 

(B 5) 

1 1 

1 1 

1 1 

where the inner variable X is defined by 

and the expansions of the steady variables T,, C,, are given by 

1 1 
(B 8a, b )  4 1 

Substitution of these series expansions into (33)-(37) of the main text reveals (via 
the longitudinal momentum equation) the gauge functions necessary for the pressure 
expansion. It is found that to balance the other terms, p, must be of the form 

p ,  = elgp(x)+gp+ .... (B 9) 

This expansion appears superficially to be inconsistent with the other parts of the 
analysis, but is in fact entirely correct. It should be remembered that the inner-zone 
behaviour is different for B + 8;' (here) than when one assumes B % 0;l. It is helpful 
here to reconstruct the full pressure variable; from (1) and (30) of the main text, we 
have, in the inner zone, 

where 9(l) comes from the expansion of the steady pressure, 

The steady theory in fact shows that 

+const., 
W )  - 4Sc d F ( Q  
Y 3TO1 dX 
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where (see I) we know that 

(B 13a,b) 

Equation (B 10) shows that the leading term of the perturbation is O(8, E ) ,  but since 
we have specifically taken the distinguished limit 

O,s+O asE+O, (B 14) 
the O1 E term is acceptable. This underlines the different character of the inner reaction 
zone under the two limits 8, e+O and 8, E +  00. 

It is then found upon substitution that the leading-order terms satisfy the following 
differential equations ; 

-- - -LeB,g, g ( F ( l ) )  = [l-e-y(l)(l + F(l))]k 
d.P) 
dX 

d4(O) u 1 d g t )  -- 
dX To, dX ' 

The preheat and equilibrium variables are also given series expansions in the form 

@t) 
4 @,=@ti+-+... [ @ = T , C , , U , V , p , H , W J ,  

Qg.2 
4 @u=Qt2+-+... [ Q = T ,  U ,  V , p , H ,  WJ, (B 21) 

(where superscripts maintain consistency with notation in I and previous papers) and 
it is found that 

W t )  = W*@) = ik V g i d z ,  (=  const.), (B 22)  
UP JOXlf1 

Hf) = H*(') UP = - ik ]ox'" Tc1) U P  dz, ( = const.), (B 23) 

where * denotes evaluation at x1 = xlfl. 
Integration of (B 15)-(B 19) yields 

(B 24) Ft) = -T*(') r(,)), up 9( 
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We observe that just as under steady conditions 9(l) followed dT(')/dX, so also, under 
unsteady conditions, 9':) follows dY:)/dX. Notice that 9'ho) is zero on both sides of 
the flame (equilibrium 9-(l) = 0; preheat 9) = GO), but that in the flame itself there 
is a non-zero contribution from 9:). 

Matching of (B 25) and (B 26) to the preheat and equilibrium solutions gives 

1 
(B 29) p+- T*(1) = 0, 

[UP Le UP 

The next-order terms in the inner zone satisfy the following set of differential 

(B 35) 
ih-9:) Sc H,*(') dzY(') d2V(l) 1 ikSc dQ:) -- -- - S c L + - - -  

dX2 3 To, dX ' YTo, T2,l dX2 
where the W-term (see I; equations (91) and (92)) is given by 

(B 36) 
and it should be noted that A, (the pre-exponential eigenvalue) is expanded as 

with 

A ,  = s : A p ( l + - +  A p  ...), 
81 

J = I o m  [ l -g (m) ]dm= 1.344 .... 

The equation a t  the next order (O(1)) obtained by eliminating the reaction term is 
also required. Using relationships satisfied by the steady solution, this can be 
simplified to 
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Dealing fist with the temperature and species equations, elimination of the 
reaction term between (B 32) and (B 33) and integrating once across the reaction zone 
yields 

Two integrations of the same equation, again using matching on both sides of the 

The direct integration of (B 32) is detailed in I, where it is shown that the following - 
(B 44) 

1 dT(l) 1 
condition holds: 

__ up I = - T*(i) +qn*(i). 
LeB, dx, f l  B, ue 

Lastly, one integration of (B 41) across the reaction zone gives 

We thus observe that by reconstructing the full expressions on both sides of the 
flame, (B 29) and (B 43) are consistent with the jump condition 

and (B 44) is consistent with the jump condition 

1 dT 
-31 LeB1 hl PI =LT:~++O,T:~. 4 (B 47) 

Results (B 42) and (B 45) combine to  give the jump condition 

Thus conditions (46)-(48) of the main text have thus been justified up to O(S;l) 
terms. Note that F:' = 0 (see I) .  

We now go on to consider the continuity (B 31) and momentum equations (B 34 
and B 35). Integration of the longitudinal momentum equation (B 34) across the 
reaction zone yields 

and in a similar manner integration of the transverse momentum equation (B 35) 
gives 

Integration of the continuity equation (B 31) yields 

Two integrations of the transverse momentum equation (B 35) yield (upon matching) 

(B 52) p a  = V*(1) 
ue 9 
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and we lastly consider the inner-zone momentum equations at  0 ( 1 )  level. These are 
given by 

dF(') 
*(I) - d@ia) 2 Scik 

dXZ 3 To, dX = $3c - +-- 

1 ScikdYF) Sc (- ik H$) d X  dy(')+ ka@F)), (B 53) 
3 To1 dx q1 To, 

Integration of (B 53) yields 

and in a similar manner, after much (lengthy) substitution, integration of (B 54) gives 

It should be noted that integration (and matching) of the O(0,) equations in &'p), 
WF) given by 

yields the simple continuity conditions 
Hg) = H*(l) 

W$' = W*(l). 
ue 9 

ue 

We now proceed to reconstruct the full expressions on both sides of the flame in 
exactly the same manner as for (B46)-(B48). Results (B30) and (B51) are 
consistent with the jump condition 
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and (B 50) and (B 56) combine to give the jump condition 

Results (B 49) and (B 55) yield 

1 
(UEp- UZe)+- (p:p-p:e) = +SC - -- 

Y r: I f *  d2 If) 
and (B 22), (B 23), (B 27), (B 52), (B 59) and (B 60) imply 

V,*p = Vce, H:p = H:e, Wzp = W:e. (B 64a, b, c) 

Hence, up to O(0;l) terms, (46)-(51) of the main text have been verified. It is 
anticipated (though not proven here), that integrating the next-order equations will 
continue to justify the jump conditions (46)-(51) and that for large 8, these results 
are a good approximation to  the effect of the flame on small-scale perturbations. 
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